ISSN 2277 - 8322

# Evaluation of Five-Class Student Model based on Hybrid Feature Subsets

Rahul Misra<sup>1</sup>, Dr. Ramkrishan Sahay<sup>2</sup>

<sup>1</sup>PhD Scholar, Department of CSE, Mahamaya Technical University, Noida, India <sup>2</sup>Professor, Department of CSE, Mahamaya Technical University, Noida, India <u>misra.rrahul@gmail.com</u>

*Abstract-* The academic achievement of higher secondary school education in India is a turning point in the life of any student, as it serves as a very important link between the higher and higher secondary education of students. But, there are determinants like demographic, academic and socioeconomic factors of students that restrict the students' performance. In this paper present the evaluation of five-class student model based on hybrid feature subsets.

*Keywords-* Education, Student, Performance, Predication Models, Feature Selection.

### I. INTRODUCTION

Education is a process of imparting or acquiring knowledge and habits through instruction or study and this process results in desirable changes in the behavior of human beings. It provides the skills to individuals to become self-confident, self-reliant and self- sustained and inculcates buoyancy to face challenges in all walks of life. It enhances the ability of individuals to manage health problems, improve nutrition and childcare, and prepare for the future. It sustains the human values which contribute to individual and collective well-being. It is the key which allows people to move up in the world, seek better jobs, and ultimately succeed in their lives. It is essential for eradicating poverty and it allows people to be more productive playing greater roles in economic life and earn a better living. It is worth mentioning that education forms the basis for lifelong learning in the context of human development and it is one of the fundamental requirements of democracy. It makes the people to aware of opportunities and rights that in turn result in more responsible and

informed citizens. These citizens can have a voice in politics and society, which is essential for sustaining democracy and so education, is the only tool which takes the country to greater heights.

As education provides multifaceted developments of human beings, it is imperative to conduct researches in education for its effective implementation for the benefits of end users. One of the major goals of educational research is to investigate behavioral patterns in pupils, students, teachers and other participants in schools and other educational institutions. In fact, educational researchers like other social science researchers use a variety of techniques which can be broadly summarized as well as categorized in to two forms of methods viz. qualitative and quantitative research methods. Both these research methods are used in the fields of natural science, social science and technology; though these methods are differ to each other in all aspects

## II. FEATURE SELECTION PROCESS

Feature selection is a process commonly used in machine learning, wherein a subset of the features available from the data is selected for application of a learning algorithm. The best subset contains the least number of dimensions that mostly contribute to accuracy; we can discard the remaining, unimportant dimensions. This is an important stage of preprocessing and is one of two ways of avoiding the curse of dimensionality. Reducing the number of irrelevant/redundant features drastically reduces the running time of a learning algorithm and yields more general concept. This helps in getting better insight into the underlying concept of a real-world classification problem. Feature selection methods try to pick a subset of features that are relevant to the target concept.

According to Dash and Liu (2007) feature selection attempts to select the minimally sized subset of features with the following criteria.

- The classification accuracy does not significantly decrease, and
- The resulting class distribution, given only the values for the selected features, is as close to the original class distribution as possible, given all features

Fig 1 show that how an optimal feature subset can be generated from the original data set through the sequence of step by step feature subset selection procedure.

There are four basic steps (Dash and Liu, 2007) in a typical feature selection method and they have been mentioned in Fig 1:

- A generation procedure used to generate the next candidate subset,
- An evaluation function used to evaluate the subset under examination,
- A stopping criterion to decide when to stop, and
- A validation procedure to check whether the subset is valid



Fig. 1: Feature selection process

# III. EVALUATION OF FIVE-CLASS STUDENT MODEL BASED ON HYBRID FEATURE SUBSETS

By repeating the evaluation of hybrid-based methods with top 20 features ranked according to their merits by CHI, CFS and ING methods, the predictive accuracy has been shown in Table 4.24. The results of the study exposed that the two classifiers BayesNet and NaiveBayes performed well against ranked based feature subsets and there was no effective improvement on the other three classifiers – J48, DT and MLP.

| Modles/FSS | FFS     | F1M-CHI- | F1M-CFS- | F1M-ING- | <b>ROC-CHI-</b> | <b>ROC-CFS-</b> | <b>ROC-ING-</b> |
|------------|---------|----------|----------|----------|-----------------|-----------------|-----------------|
|            |         | 13       | 19       | 13       | 5               | 12              | 5               |
| J48        | 71.2806 | 65.0155  | 67.9841  | 65.0155  | 51.2254         | 59.2164         | 51.2254         |
| DT         | 52.8133 | 51.5361  | 52.0366  | 51.5361  | 50.6904         | 50.932          | 50.6904         |
| BayesNet   | 42.7511 | 47.4629  | 47.4629  | 47.4629  | 49.1025         | 47.4629         | 49.1025         |
| NaiveBayes | 39.5927 | 41.8019  | 42.613   | 41.8019  | 45.2192         | 44.3907         | 45.2192         |

Table 1: Performance Evaluation Results of Hybrid-Based Classifiers for Five-Class Student data

The poor performances of the classifiers against these hybrid-based features were due to fact that smaller number of features were chosen based on F1-value and ROC-value (Fig 2). Another possibility for getting poor predictive performance was that the maximum number of instances was on particular class "*good*". In other words, ROC might not be an ideal measurefor multi-class problem.



Fig. 2: 2D-line plot showing comparative performance of five classifiers-J48, DT, BayesNet, NaiveBayes and MLP with Hybrid-based feature selection methods for Five-Class student data set

Alternatively, the performance of these five classifiers was assessed through misclassification cost measure. The relative ranking for five-class problem was fixed as shown in Table 1 and its associated cost matrix for three-class has been given in Table 2. Heavy penalty was fixed for misclassification of "excellent "class into "fail" class.

| Results | excellent | very-good | good     | fair            | fail             |
|---------|-----------|-----------|----------|-----------------|------------------|
|         | (90% and  | (75% and  | (60% and | (40% and above) | less than 40% of |
|         | above)    | above)    | above)   |                 | mark             |
| Ranking | 0.0       | 0.1       | 0.2      | 0.3             | 0.9              |

Table 2: Relative Result Ranking for Five-Class

|     |           |           | Predicted Results |      |      |      |      |
|-----|-----------|-----------|-------------------|------|------|------|------|
| R   |           | excellent | very-good         | good | fair | fail |      |
|     |           |           | 0.0               | 0.1  | 0.2  | 0.3  | 0.9  |
| e s | excellent | 0.0       | 0                 | -0.1 | -0.2 | -0.3 | -0.9 |
|     | very-     | 0.1       | 0.1               | 0    | -0.1 | -0.2 | -0.8 |
|     | good      |           |                   |      |      |      |      |
|     | good      | 0.2       | 0.2               | 0.1  | 0    | -0.1 | 0    |
|     | fair      | 0.3       | 0.3               | 0.2  | 0.1  | 0    | -0.6 |
|     | fail      | 0.4       | 0.9               | 0.8  | 0.7  | 0.6  | 0    |

Table 3: Matrix representing Degree of Misclassification for Five-Class

The final cost matrix for five-class problem was obtained from the degree of misclassification using equation (4.3), with m = 0.9 and S = 100 and it has been shown in Table 3.

|          |   |          | Predicted Results |          |    |    |  |  |
|----------|---|----------|-------------------|----------|----|----|--|--|
|          |   | 0        | Α                 | В        | С  | F  |  |  |
| lts      | 0 | 0        | 2                 | 4        | 6  | 18 |  |  |
| rue Resu | Α | 3.333333 | 0                 | 2        | 4  | 16 |  |  |
|          | В | 6.666667 | 3.333333          | 0        | 2  | 0  |  |  |
|          | С | 10       | 6.666667          | 3.333333 | 0  | 12 |  |  |
|          | D | 30       | 26.66667          | 23.33333 | 20 | 0  |  |  |

Table 4: Cost Matrix for Five-Class

Table 5 shows the performance results of five classifiers against filtered subsets obtained by CFS, CSS, CHI, GAR and ING evaluation methods. The performance results of these classifiers showed that the rank value of both cost measure and predictive measures in filter-based approach were quit similar for MLP and J48 classifiers. Table 5: Performance Evaluation Results of Filter-Based Eive-Class Classifiers

|                  | <b>Based on Misclassificat</b> | Based on Accu | Accuracy Measure |         |  |
|------------------|--------------------------------|---------------|------------------|---------|--|
| Classifiers      | Cost                           | Ranking       | Accuracy         | Ranking |  |
| <b>Bayes-CFS</b> | 25.54592                       | 18            | 49.1025          |         |  |
| <b>Bayes-CHI</b> | 27.0665                        | 21            | 47.4629          | 19      |  |
| <b>Bayes-CSS</b> | 27.59583                       | 22            | 49.0162          | 18      |  |
| <b>Bayes-FSS</b> | 24.51467                       | 15            | 42.7511          | 21      |  |
| Bayes-GAR        | 29.30358                       | 24            | 47.4629          | 19      |  |
| <b>Bayes-ING</b> | 29.30358                       | 24            | 47.4629          | 19      |  |
| DT-CFS           | 27.87417                       | 23            | 49.4477          | 16      |  |
| DT-CHI           | 24.51467                       | 15            | 51.6741          | 14      |  |
| DT-CSS           | 25.60515                       | 19            | 49.7929          | 15      |  |
| DT-FSS           | 24.43254                       | 13            | 52.8133          | 12      |  |
| DT-GAR           | 24.05142                       | 11            | 51.9676          | 13      |  |
| DT-ING           | 24.51467                       | 15            | 51.6741          | 14      |  |
| J48-CFS          | 24.06144                       | 12            | 54.591           | 11      |  |
| J48-CHI          | 15.66173                       | 9             | 68.4674          | 9       |  |
| J48-CSS          | 15.43349                       | 7             | 70.8146          | 6       |  |
| J48-FSS          | 15.13625                       | 5             | 71.2806          | 5       |  |
| J48-GAR          | 15.33592                       | 6             | 68.5537          | 7       |  |
| J48-ING          | 15.65809                       | 8             | 68.4846          | 8       |  |
| Naive-CFS        | 26.83961                       | 20            | 44.6151          | 20      |  |
| Naive-CHI        | 24.69793                       | 17            | 40.3003          | 24      |  |
| Naive-CSS        | 25.23449                       | 18            | 41.8882          | 22      |  |
| Naive-FSS        | 24.55009                       | 16            | 39.5927          | 25      |  |
| Naive-GAR        | 24.49796                       | 14            | 41.0079          | 23      |  |
| Naive-ING        | 24.69793                       | 17            | 40.3003          | 24      |  |
| MLP-CFS          | 21.82812                       | 10            | 59.7169          | 10      |  |
| MLP-CHI          | 11.84857                       | 4             | 81.6362          | 4       |  |
| MLP-CSS          | 9.863847                       | 2             | 85.951           | 2       |  |
| MLP-FSS          | 4.338674                       | 1             | 92.7166          | 1       |  |
| MLP-GAR          | 10.03112                       | 3             | 82.6717          | 3       |  |
| MLP-ING          | 10.03112                       | 3             | 82.6717          | 3       |  |

On considering the performance of Wrapper-based classifiers, MLP and J48 turned out as top ranked classifiers in terms of both cost measure and accuracy measure for Full Feature Set (FFS).

|                | B                      | ased on | ed on AccuracyMeasure |         |  |
|----------------|------------------------|---------|-----------------------|---------|--|
| Classifiers    | Misclassification cost |         |                       |         |  |
|                | Measure                |         |                       |         |  |
|                | Cost Ranking           |         | Accuracy              | Ranking |  |
| BayesNet-FFS   | 24.57467               | 6       | 42.7511               | 9       |  |
| BayesNet-NB-BF | 26.51579               | 9       | 48.2396               | 8       |  |
| DT-FFS         | 24.43254               | 5       | 52.8133               | 5       |  |
| DT-NB-BF       | 27.13642               | 10      | 49.4822               | 6       |  |
| J48-FFS        | 15.13625               | 2       | 71.2806               | 3       |  |
| J48-NB-BF      | 18.2123                | 4       | 62.9272               | 4       |  |
| NaiveBayes-FFS | 25.33629               | 7       | 39.5927               | 10      |  |
| NB-NB-BF       | 25.86213               | 8       | 48.2741               | 7       |  |
| MLP-FFS        | 4.338674               | 1       | 92.7166               | 1       |  |
| MLP-NB-BF      | 18.17748               | 3       | 72.2817               | 2       |  |

 Table 6: Performance Evaluation Results of Wrapper-Based Five-Class Classifiers

As regards the performance of the Hybrid-based five-class classifiers (Table 6) are concerned, the classifier MLP had top ranked for FSS and F1M-CFS-19 feature subsets. The classifier J48 had also performed well for both FSS and F1M-CFS-19 feature subsets following the MLP classifier. The other feature subsets did not influence the predictive measure of the five classifiers.

| Classifiers         | Based on Miscl<br>cost Mea | assification<br>sure | Based on<br>AccuracyMeasure |         |
|---------------------|----------------------------|----------------------|-----------------------------|---------|
|                     | Cost                       | Ranking              | Accuracy                    | Ranking |
| BayesNet-F1M-CFS-19 | 29.30358                   | 24                   | 47.4629                     | 18      |
| BayesNet-F1M-CHI-13 | 29.56385                   | 25                   | 47.4629                     | 18      |
| BayesNet-F1M-ING-13 | 29.56385                   | 25                   | 47.4629                     | 18      |
| BayesNet-FFS        | 24.51467                   | 13                   | 42.7511                     | 21      |
| BayesNet-ROC-CFS-12 | 29.30358                   | 24                   | 47.4629                     | 18      |
| BayesNet-ROC-CHI-5  | 27.59583                   | 21                   | 49.1025                     | 17      |
| BayesNet-ROC-ING-5  | 27.59583                   | 21                   | 49.1025                     | 17      |
| DT-F1M-CFS-19       | 24.23805                   | 10                   | 52.0366                     | 12      |
| DT-F1M-CHI-13       | 25.75095                   | 16                   | 51.5361                     | 13      |
| DT-F1M-ING-13       | 25.75095                   | 16                   | 51.5361                     | 13      |
| DT-FFS              | 24.43254                   | 12                   | 52.8133                     | 10      |
| DT-ROC-CFS-12       | 26.80697                   | 19                   | 50.932                      | 15      |
| DT-ROC-CHI-5        | 28.9028                    | 23                   | 50.6904                     | 16      |
| DT-ROC-ING-5        | 28.9028                    | 23                   | 50.6904                     | 16      |
| J48-F1M-CFS-19      | 15.68065                   | 4                    | 67.9841                     | 6       |
| J48-F1M-CHI-13      | 17.05488                   | 6                    | 65.0155                     | 8       |
| J48-F1M-ING-13      | 17.05488                   | 6                    | 65.0155                     | 8       |
| J48-FFS             | 15.13625                   | 3                    | 71.2806                     | 4       |

Table 7: Performance Evaluation Results of Hybrid-Based Five-Class Classifiers

| J48-ROC-CFS-12 | 20.88832 | 9  | 59.2164 | 9  |
|----------------|----------|----|---------|----|
| J48-ROC-CHI-5  | 28.78956 | 22 | 51.2254 | 14 |
| J48-ROC-ING-5  | 28.78956 | 22 | 51.2254 | 14 |
| NB-ROC-ING-5   | 24.24043 | 11 | 42.613  | 22 |
| NB-F1M-CFS-19  | 26.35597 | 17 | 41.8019 | 23 |
| NB-F1M-CHI-13  | 26.35597 | 17 | 41.8019 | 23 |
| NB-F1M-ING-13  | 24.55009 | 14 | 39.5927 | 24 |
| NB-FFS         | 25.33629 | 15 | 44.3907 | 20 |
| NB-ROC-CFS-12  | 27.2351  | 20 | 45.2192 | 19 |
| NB-ROC-CHI-5   | 27.2351  | 20 | 45.2192 | 19 |
| MLP-F1M-CFS-19 | 13.73761 | 2  | 78.426  | 2  |
| MLP-F1M-CHI-13 | 15.81593 | 5  | 73.4553 | 3  |
| MLP-F1M-ING-13 | 17.15441 | 7  | 69.0024 | 5  |
| MLP-FFS        | 4.338674 | 1  | 92.7166 | 1  |
| MLP-ROC-CFS-12 | 17.42424 | 8  | 66.3445 | 7  |
| MLP-ROC-CHI-5  | 26.64032 | 18 | 52.261  | 11 |
| MLP-ROC-ING-5  | 26.64032 | 18 | 52.261  | 11 |

### IV. CONCLUSION

The academic achievement of higher secondary school education in India is a turning point in the life of any student, as it serves as a very important link between the higher and higher secondary education of But. there are determinants students. like demographic, academic and socio-economic factors of students that restrict the students' performance. This necessitates the need for some forecasting systems to predict the academic performance of students at plus two examinations. This is an attempt made first time in this aspect, which is mainly devoted to design and develop a prediction model by taking into account variables pertaining to the Indian society, for Indian educational system. Wide literature review on academic performance of students and its prediction by using performance models was carried out. But, it was noticed that limited research investigations have been executed not only on the factors that are influencing the academic performance of the students at high school/ higher secondary level but also on the prediction of the academic performance of the students using different classification algorithm in data mining. In this paper

present and analysis of the evaluation of five-class student model based on hybrid feature subsets.

### V. REFERENCES

- V.Ramesh, P.Parkavi and K.Ramar, "Predicting Student Performance: A Statistical and Data Mining Approach", International Journal of Computer Applications, Vol.-63, No.8, pp. 35-39, February 2013.
- [2] Jagannath Mohanty, "Modern Trends in Indian Education, Second Revised & Enlarged Edition", Deep &Deep Publication Pvt. Ltd., New Delhi, 2004.
- [3] U. bin Mat, N. Buniyamin, P. M. Arsad and R. Kassim, "An overview of using academic analytics to predict and improve students' achievement: A proposed proactive intelligent intervention," 2013 IEEE 5th Conference on Engineering Education (ICEED), pp. 126-130, 2013.
- [4] Z. Ibrahim, D. Rusli, Predicting students academic performance: comparing artificial neural network, decision tree and linear regression, in: 21st Annual SAS Malaysia Forum, 5th September, 2007.
- [5] M. Ramaswami and R.Bhaskaran, "A Child Based Performance Prediction Model in Educational Data Mining", International Journal of Computer

Science Issues Vol. 7, Issue 1, No. 1, January 2010.

- [6] Nguyen Thai-Nghe, Andre Busche, and Lars SchmidtThieme, "Improving Academic Performance Prediction by Dealing with Class Imbalance", 2009 Ninth International Conference on Intelligent Systems Design and Applications.
- [7] L.Arockiam, S.Charles, I.Carol, P.Bastin Thiyagaraj, S. Yosuva, V. Arulkumar, "Deriving Association between Urban and Rural Students Programming Skills", International Journal on Computer Science and Engineering Vol. 02, No. 03, pp. 687-690, 2010.
- [8] P. Cortez, and A. Silva, "Using Data Mining To Predict Secondary School Student Performance", In EUROSIS, A. Brito and J. Teixeira (Eds.), pp.5-12, 2008.
- [9] D. Kabakchieva, "Student performance prediction by using data mining classification algorithms", International Journal of Computer Science and Management Research, vol.1, 2012.
- [10] V. Ramesh, "Predicting student performance: A statistical and data mining approach", International Journal of Computer Applications, vol. 63, no. 8, 2013.